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To aid the physical understanding of spiralling-columnar convection emerging in
rapidly rotating spheres and spherical shells, two-dimensional thermal convection in
a rapidly rotating annulus is investigated through the radial propagation properties
of topographic Rossby waves. Two kinds of the boundaries containing the fluid in
the axial direction are considered: a convex type modelling a spherical geometry and
a concave type for comparison. The linear stability of a basic state with no motion
and uniformly unstable stratification is examined and spirally elongated structures
of critical convection are obtained for small Prandtl numbers. An analysis of the
energy budget shows that a part of the kinetic energy generated in the region
with slightly inclined boundaries is dynamically transferred and dissipates through
viscosity in the region with strongly inclined boundaries. This indicates that the
Rossby waves propagate from the region with slightly inclined boundaries to the
region with strongly inclined boundaries. It is presented that the appearance of a
spiral structure corresponds to an increase of the local radial wavenumber of the
Rossby waves propagating in the radial direction. The flow patterns obtained using
the dispersion relation of the Rossby waves coincide with those of the tailing part of
the spiral structure obtained numerically. As the Prandtl number increases, the Rossby
waves barely propagate because of strong viscous dissipation, and the flow pattern is
localized in the region with slightly inclined boundaries. For convex boundaries with
unstable stratification concentrating near the outer boundary and concave boundaries
with unstable stratification confined near the inner boundary, the flow patterns tilt
in the direction inverse to the case of uniform unstable stratification. The tilting
direction of the flow pattern is not determined by the curvature of the boundaries
considered but instead by the radial propagation direction of the Rossby waves
excited by thermal convection.

1. Introduction
Thermal convection in rotating spheres and spherical shells has been investigated

vigorously over the last 40 years for application to the atmospheres of the Sun
and Jovian planets and the fluid cores of the planets. A pioneering study of thermal
convection in rapidly rotating spheres and spherical shells, performed by Busse (1970),
obtained the structure of critical thermal convection in a rapidly rotating sphere
using an asymptotic expansion method. The study showed that critical convection
is strongly governed by the Taylor–Proudman theorem and that two-dimensional
vortices uniform along the rotating axis emerge locally in the middle of a sphere.
However, recent numerical calculations have shown that the fluid motion of the
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critical state is not necessarily localized (Zhang & Busse 1987; Zhang 1992). When the
Prandtl number is large, Taylor-column-type convection similar to the Busse solution
occurs locally (columnar convection), whereas as the Prandtl number decreases,
convective vortices expand radially and a spiral structure tilting outward in the
prograde direction emerges as the critical state (spiralling-columnar convection). A
mathematical description of the spiral structure of the critical convection is formulated
by improving the Busse asymptotic theory (Yano 1992; Jones, Soward & Mussa 2000;
Dormy et al. 2003).

An important characteristic of spiral structures is the tilting direction of the
convective vortices. Flow patterns tilting outward in the prograde direction are
accompanied by angular momentum transport in the radial direction through
Reynolds stress, producing a super-rotation state at the outer boundary of the
equatorial region. It is considered that this mechanism dominates the generation of
the equatorial super-rotation states observed at the surface of the sun and in the
Jovian atmospheres (Busse 1983a, b; Takehiro & Hayashi 1999; Aurnou & Olson
2001; Christensen 2001). The tilting direction of a flow pattern is considered to be
determined by the curvature of the boundaries in the direction of the rotating axis
(Busse 1983a, b, 2002). It was shown by asymptotic expansion that a flow pattern tilts
outward in the prograde direction when the boundaries are convex, whereas when
the boundaries are concave, it tilts inward in the prograde direction.

As described earlier, mathematical descriptions of the critical states of thermal
convection in rotating spheres and spherical shells have been successful so far.
However, mathematical descriptions alone are not always sufficient to understand the
characteristics of a phenomenon. Satisfactory physical explanations of why a spiral
structure emerges as the critical state at low Prandtl numbers or why the curvature of
the boundaries is related to the tilting direction of the flow pattern have not yet been
proposed. For example, it is often stated that the reason for the outward-prograde
tilting of the cell is because the propagation speed in the longitudinal direction of
the convective flow pattern is higher in the outer region than in the inner region
(Busse 2002; Vasavada & Showman 2005). This explanation is appropriate in the
case in which the inner and outer parts of the convection travel separately at their
own speeds (Schnaubelt & Busse 1992). However, it is an unsatisfactory explanation
of spiralling-columnar convection, since a spiral structure, which emerges as a critical
mode of the linearized governing equations, propagates at the same speed everywhere.

This paper attempts to physically interpret the properties of spiralling-columnar
convection. In order to achieve an intuitive understanding of the phenomenon, a three-
dimensional spherical system is not considered; rather, a model of two-dimensional
convection in a rotating annulus with inclined boundaries binding the fluid in the
axial direction is proposed. This model can extract the dynamical essentials of three-
dimensional convection in rapidly rotating spheres and spherical shells (e.g. Busse &
Hood 1982; Busse 1986; Busse & Or 1986; Or & Busse 1987; Lin 1990; Schnaubelt &
Busse 1992; Takehiro et al. 2002; Plaut & Busse 2005). When the rotation rate of
the system is large, columnar fluid motion uniform along the rotating axis becomes
predominant according to the Taylor–Proudman theorem. The model incorporates
the effect of tilting surfaces binding the fluid in the axial direction, i.e. the topographic
β effect, with two-dimensional fluid motion.

‘Topographic Rossby waves’ describe typical fluid motion governed by the
topographic β effect. These waves occur through the expansion and contraction
of vortex columns by their radial displacement and the inclination of the boundaries
binding the fluid in the axial direction. In this paper, a physical understanding of
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spiralling-columnar convection is attempted by relating its characteristics with the
radial propagation properties of Rossby waves. As a result of this comparison, we
show that the outward-prograde tilting pattern is not caused by a phase speed larger in
the outer region than in the inner region but by an increase of the radial wavenumber
in the outer region due to conservation of the phase speed. The comparison with
the Rossby waves will help explain hydrodynamic structures, such as the excitation
region of convective motion and the geometry of propagation and dissipation of the
Rossby waves.

It should be noted that the Rossby waves discussed here are different from the
‘thermal Rossby waves’ denoted in the studies so far (e.g. Busse 1986). The thermal
Rossby waves refer to the entire structure of longitudinally propagating convective
motion affected by the thermal effects, while the traditional purely dynamic Rossby
waves are used here. The energy budget analyses presented next will show that the
tailing part of the spiralling convection is not dominated by the thermal effects
but is governed by the dynamical transfer of kinetic energy and viscous dissipation.
Therefore, the tailing part of the spiral structure can be modelled only by the dynamic
factors without the thermal effects such as buoyancy and thermal diffusion.

Section 2 describes the mathematical formulation of the rapidly rotating annulus
model, and in § 3 a linear stability analysis is performed. On investigating the energy
budget of the obtained spiralling convection, it is observed that the kinetic energy
produced in the region with weak topographic β effect is dynamically transferred
to the region with strong topographic β effect and dissipated by viscosity. On the
basis of this picture, the radial propagation characteristics of the Rossby waves are
examined, and it is shown that the obtained spiral structure of critical convection
can be explained by an increase of a local radial wavenumber of the Rossby waves
propagating in the radial direction. We also present the special case in which the tilting
direction of the flow pattern becomes inverse to that expected from the curvature of
the boundaries and propose that the direction of tilt is determined by the direction of
propagation of the Rossby waves excited by thermal convection. Section 4 summarizes
our results.

2. Model
Let us consider a Boussinesq fluid filling an annular region bound by equatorially

symmetric spherical boundaries cut from a self-gravitating spherical shell, as shown
in figure 1. We assume that the annulus rotates rapidly with a rotation rate Ω and
that the fluid motion is two-dimensional and uniform in the direction of the rotating
axis in order to satisfy the Taylor–Proudman theorem. We introduce the x coordinate
in the retrograde azimuthal direction, the y coordinate in the radial direction and
the z coordinate in the direction of the rotating axis. Gravity operates in the inward
radial direction. The fluid is uniformly warmed at the inner boundary and cooled at
the outer boundary. The governing equations are the equation of the z component of
the vorticity and the equation of the temperature. Disturbances from the conductive
static state are considered and the linearized equations are as follows:

∂

∂t
∇2ψ + Pη(y)

∂ψ

∂x
= PR

∂θ

∂x
+ P ∇2∇2ψ, (2.1)

∂θ

∂t
+

dΘ

dy

∂ψ

∂x
= ∇2θ. (2.2)
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Figure 1. Geometry of the system considered: (a) case with spherical convex boundaries and
(b) case with concave boundaries.

The system is non-dimensionalized by using the radial width of the annulus d

as the length scale and the thermal diffusive time d2/κ as the time scale, where
κ is the thermal diffusivity; ψ(x, y, t) and θ(x, y, t) are the stream function and
temperature disturbance, respectively; and Θ(y) is the temperature distribution of the
basic state. The term ∇2 = ∂xx + ∂yy denotes the two-dimensional Laplacian operator.
The non-dimensional parameters P = ν/κ and R = αg�T d3/(κν) are the Prandtl
number and the Rayleigh number, respectively, where ν is the kinematic viscosity, α

is the coefficient of thermal expansion, g is the gravitational acceleration and �T is
the temperature difference between the inner and outer boundaries. The boundary
condition in the x direction is cyclic and in the y direction is free-slip with fixed
temperature:

ψ =
∂2ψ

∂y2
= θ = 0 at y = 0, 1. (2.3)

The coefficient η(y) represents the topographic β effect originating from the
inclination of the boundaries in the direction of the rotating axis. In studies conducted
to date, this coefficient has been assumed to be constant (Busse 1986; Busse & Or
1986; Lin 1990; Takehiro et al. 2002) or a linear equation of y, which means that
the curvature of the boundaries is constant (e.g. Busse & Hood 1982; Or & Busse
1987; Schnaubelt & Busse 1992; Plaut & Busse 2005). Here it is assumed that the
coefficient varies radially, to compare the case with convex boundaries, which model
the outer spherical geometry, against the case with concave boundaries. When the
variation of the length of the domain in the direction of the rotation axis L is small
and the inclination of the boundaries is constant, the coefficient becomes 4η0d/(LE),
where η0 is the inclination of the boundaries and E = ν/(Ωd2) is the Ekman number
(Busse 1986). By evaluating this formula at each radial point, it is possible to extend
it to the varying inclination cases. When the boundary is expressed as z = f (s),
η(y) = −2f ′(s)/[f (s)E] is obtained, where s = s(y) is the distance from the rotation
axis and is associated with y as s(y) = s0 + (s1 − s0)y (see figure 1). When the outer
boundary is a sphere of radius ro, the boundary is expressed as z =

√
r2
o − s(y)2. This

gives

η(y) =
2s(y)

E
[
r2
o − s(y)2

] , s(y) = s0 + (s1 − s0)y. (2.4)
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In the following section, the parameters are fixed as ro = 1.0, s0 = 0.4, and s1 =
0.9.

For concave boundaries, z =1/s(y). In this case, the coefficient of the topographic
β effect becomes

η(y) =
2

Es(y)
, s(y) = s0 + (s1 − s0)y. (2.5)

In the following section, the parameters are fixed as s0 = 0.05 and s1 = 0.55.
To obtain the critical state of thermal convection, (2.1) and (2.2) are solved in the

following form:

ψ(x, y, t) = ψ̃(y) exp(ikx + σ t), θ(x, y, t) = θ̃ (y) exp(ikx + σ t). (2.6)

This gives

σ

(
d2

dy2
− k2

)
ψ̃ + ikPη(y)ψ̃ = ikPRθ̃ + P

(
d2

dy2
− k2

)2

ψ̃, (2.7)

σ θ̃ + ik
dΘ(y)

dy
ψ̃ =

(
d2

dy2
− k2

)
θ̃ , (2.8)

ψ̃ =
d2ψ̃

dy2
= θ̃ = 0 at y = 0, 1. (2.9)

From (2.7), (2.8) and (2.9), it can be seen that the even-order derivatives of ψ̃ and θ̃

become 0 at y = 0 and 1. We obtain the coefficient matrix by expanding ψ̃ and θ̃ in
the y direction with a sin series satisfying the boundary conditions. For each given
Prandtl number, the critical state is determined by solving the eigenvalue problem
iteratively. The sin series in the y direction is calculated up to the 85th order in § § 3.1
and 3.2 and the 343rd order in § 3.3. We set the region size in the x direction as 8
and the wavenumbers in the x direction are chosen as k = (π/4) · n, n= 1, 2, . . . . The
Ekman number is fixed to E = 1.0 × 10−4 for all cases.

3. Results
3.1. Spherical convex boundaries

Figure 2 shows structures of critical convection for spherical convex boundaries and
a uniform basic temperature gradient dΘ/dy = −1 for various values of the Prandtl
number. The obtained critical states have characteristics similar to those of rapidly
rotating spheres and spherical shells. As seen in the distributions of the stream
function, radially narrow vortex columns emerge when the Prandtl number is large,
while they extend spirally as the Prandtl number decreases. The direction of the tilting
is in the positive y and negative x directions (outward in the prograde direction) for
all cases. The tilting direction of the flow pattern coincides with the results of an
asymptotic expansion with a small parameter of the curvature of the boundaries
(Busse 1983a, b, 2002). The radial extent of the spiral structure of the temperature
field is smaller than that of the stream function especially in the cases of small Prandtl
numbers.

In order to explain the flow patterns of the critical convection in figure 2, the
kinetic and thermal energy budgets are investigated. The equation of kinetic energy
is obtained by multiplying ψ by (2.1). Averaging it over one wavelength in the x
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Figure 2. Structures of critical convection for spherical convex boundaries and uniform basic
temperature gradient dΘ/dy = −1 for various values of the Prandtl number: (a) P = 0.1, (b)
P = 0.2, (c) P = 0.5 and (d) P = 1.0. The left and right panels show the stream function and
temperature disturbance, respectively.

direction gives

∂

∂t

[
1

2
|∇ψ |2

]
= − ∂

∂y

(
−ψ

∂2ψ

∂y∂t

)
− ∂

∂y

(
Pψ

∂∇2ψ

∂y
− P

∂ψ

∂y
∇2ψ

)

+ PRθ
∂ψ

∂x
− P (∇2ψ)2, (3.1)

where the overline denotes the average over one wavelength in the x direction. The
left-hand side is the time variation of the kinetic energy, and is equal to zero for the
critical state. The third term on the right-hand side is the generation of kinetic energy
by the buoyancy force. The fourth term is viscous dissipation. The second term is
the convergence of the kinetic energy flux by the viscosity. The first term denotes
the energy flux convergence by the dynamic effect; when the thermal and viscous
effects are negligible, this term denotes the energy flux convergence by the Rossby
waves (Pedlosky 1987). By assuming a plane-wave-type solution, the kinetic energy is
observed to be transported with the group velocity of the Rossby waves.
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The equation of thermal energy is obtained by multiplying θ by (2.2) and averaging
it over one wavelength in the x direction:

∂

∂t

[
1

2
θ2

]
= −dΘ

dy
θ
∂ψ

∂x
− ∂

∂y

(
−θ

∂θ

∂y

)
− |∇θ |2. (3.2)

The left-hand side is the time variation of the thermal energy and is equal to zero for
the critical state. The first term on the right-hand side is the generation of thermal
energy by the vertical fluid motion. The third term is dissipation by thermal diffusivity.
The second term is the convergence of the thermal energy flux by diffusivity.

Figure 3 plots each term of the right-hand sides of (3.1) and (3.2) for the critical
convection. When the Prandtl number is large, kinetic energy generated in the inner-
half region is dissipated by viscosity in the same region. Thermal energy is also
generated and dissipated in the inner-half region. As the Prandtl number decreases,
the region of viscous dissipation extends outward, whereas the generation of kinetic
and thermal energies and the dissipation of thermal energy remain inside the inner-
half region. At the same time, the ratio of dynamic-energy flux convergence by the
Rossby waves increases. The convergence is negative in the inner region and positive
in the outer region, which means that the kinetic energy generated in the inner region
is transferred to the outer region. This suggests outward propagation of the Rossby
waves excited in the inner region. A part of the kinetic energy generated in the inner
region is transferred by the Rossby waves and dissipated in the outer region.

From figure 3 it can be observed that the dynamic factors dominate the energy
budget in the outer-half region and the thermal factors become less important as the
Prandtl number is decreased. Therefore, in order to explain the flow patterns in the
outer region of the critical convection in figure 2, let us investigate (2.1) by neglecting
the thermal effect. Moreover, since the Prandtl number is small, the viscous effect is
assumed to be negligible for simplicity. Equation (2.1) becomes

∂

∂t
∇2ψ + Pη(y)

∂ψ

∂x
= 0. (3.3)

This equation is the linearized conservation of potential vorticity, and its solution is
called the topographic Rossby waves. We require a plane-wave-type solution of (3.3)
with a slowly varying amplitude:

ψ(x, y, t) =

∞∑
n=0

εnψ̂n(X, Y, T ) exp[iφ(X, Y, T )/ε], (3.4)

where the coordinates

X = εx, Y = εy, T = εt (3.5)

express the fact that the field is slowly varying. We assume that the coefficient of the
topographic β effect is also slowly varying, i.e. η = η(Y ). Substituting (3.4) in (3.3)
and keeping it to order ε, the local dispersion relation is obtained from the terms of
ε0 (Whitham 1974):

iω(k2 + l2) + iPη(Y )k = 0, i.e. ω = −Pη(Y )k

k2 + l2
, (3.6)

where

ω = − ∂φ

∂T
, k =

∂φ

∂X
, l =

∂φ

∂Y
(3.7)
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Figure 3. Comparison of the terms in the kinetic energy and thermal energy equations
for spherical convex boundaries and uniform basic temperature gradient dΘ/dy = −1. The
left panel of each figure describes the kinetic energy budget. The solid, broken, dotted and
dotted–broken lines denote kinetic energy generation by the buoyancy force, viscous dissipation,
convergence of the energy flux by viscosity and convergence of the energy flux by the Rossby
waves, respectively. The right panel of each figure describes the thermal energy budget. The
solid, broken and dotted lines indicate thermal energy generation by the vertical motion,
dissipation by thermal diffusivity and convergence of the energy flux by thermal diffusion,
respectively: (a) P = 0.1, (b) P = 0.2, (c) P = 0.5 and (d) P = 1.0.

are the local frequency and wavenumbers in the x and y directions, respectively. The
behaviours of ω, k and l are obtained by the definitions (3.7) and the local dispersion
relation (3.6). Since the local dispersion relation is expressed as ω = ω(k, l, Y ), this
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temperature gradient dΘ/dy = −1 obtained by the local dispersion relation (3.13). The used
parameters are ω = −86.0 and k = 11.0, which are those of the critical convection for P = 0.1:
(a) Positive y component of the group velocity (outward, kl > 0, Cgy > 0). (b) Negative y
component of the group velocity (inward, kl < 0, Cgy < 0).

gives

∂ω

∂T
=

(
∂ω

∂k

)
l,Y

∂k

∂T
+

(
∂ω

∂l

)
k,Y

∂l

∂T
= −Cgx

∂ω

∂X
− Cgy

∂ω

∂Y
, (3.8)

∂k

∂T
= − ∂ω

∂X
= −

(
∂ω

∂k

)
l,Y

∂k

∂X
−

(
∂ω

∂l

)
k,Y

∂l

∂X
= −Cgx

∂k

∂X
− Cgy

∂k

∂Y
, (3.9)

∂l

∂T
= −∂ω

∂Y
= −

(
∂ω

∂k

)
l,Y

∂k

∂Y
−

(
∂ω

∂l

)
k,Y

∂l

∂Y
−

(
∂ω

∂Y

)
k,l

= −Cgx

∂l

∂X
− Cgy

∂l

∂Y
−

(
∂ω

∂Y

)
k,l

, (3.10)

where Cgx and Cgy are the x and y components of the group velocity:

Cgx =

(
∂ω

∂k

)
l,Y

=
Pη(Y )(k2 − l2)

(k2 + l2)2
, Cgy =

(
∂ω

∂l

)
k,Y

=
2Pη(Y )kl

(k2 + l2)2
. (3.11)

From (3.8) and (3.9), the frequency ω and the wavenumber in the x direction k are
found to be conserved because the system is independent of t and x. In contrast,
since the coefficient of the topographic β effect η depends on y, the wavenumber in
the y direction l varies as the waves propagate in the y direction.

As seen in figure 3, kinetic energy is generated and convective motion is excited in
the inner region. Accordingly, we suppose that the Rossby waves with frequency ω

and wavenumber k are emitted from y = 0.5. As the waves propagate radially and y

becomes large, η(Y ) increases. From the dispersion relation (3.6), the absolute value
of l must increase to conserve ω and k. As a result, the wavefront of the Rossby waves
inclines and approaches the horizontal surface as they propagate outward, forming a
spiral structure.

Expressing this process explicitly, (3.6) is solved for l as

l(y) = ±
√

−Pη(y)

ω
− k2, (3.12)

where Y is substituted with y for simplicity. Using l(y), the distribution of the stream
function at a given time can be found as follows:

ψ(x, y, t) = ψ̂0 exp

{
i

(
kx +

∫ y

0.5

l(y)dy − ωt

)}
. (3.13)

Figure 4 shows the distributions of the stream function obtained by (3.13) with the
frequency and wavenumber of critical convection at P = 0.1, showing the cases for
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both positive and negative signs in (3.12). The case with kl > 0, i.e. a positive group
velocity in the y direction, appears to be consistent with the pattern of the critical
convection. When the y component of the group velocity is positive, the streamline
tilts in the positive y and negative x directions (outward in the prograde direction).
In contrast, when the y component of the group velocity is negative, kl < 0, and the
streamline inclines towards the positive y and positive x directions (outward in the
retrograde direction). Thus it can be concluded that the tilting direction of the flow
pattern is related to the radial propagation direction of the Rossby waves. We can
also explain the spiral structure observed in figure 2 as being formed by the increase
of the local radial wavenumber of the Rossby waves propagating from the inner to
the outer regions.

The Rossby waves emitted from the inner region are dissipated by the viscous effect
during their outward propagation. Because the dissipation rate is P [k2 + l(y)2] in unit
time, the stream function is evaluated as

ψ(x, y, t) = ψ̂0 exp

{
i

(
kx +

∫ y

0.5

l(y) dy − ωt

)}
exp

{
−

∫ y

0.5

P (k2 + l(y)2)/Cgy(y) dy

}
.

(3.14)

Figure 5 compares the stream function calculated by (3.14) and that of critical
convection obtained numerically for various values of the Prandtl number. The
comparison shows that (3.14) well describes the tailing part of the spiral streamline
pattern of the critical convection. The radial extent of the streamline obtained by
(3.14) is nearly equal to that of the critical convection. It can be seen that at small
Prandtl numbers, the propagation distance of the Rossby waves is sufficiently large for
a spiral structure to appear because of the small viscous effect. However, it decreases
as the Prandtl number increases because of the strong viscous effect, and the flow
pattern is localized in the inner region.

3.2. Concave boundaries

In this section, the structure of critical convection for the case of concave boundaries
is explained by the radial propagation properties of the Rossby waves for the purpose
of comparison with the previous section.

Figure 6 shows structures of critical convection for concave boundaries and uniform
basic temperature gradient dΘ/dy = −1 for various values of the Prandtl number. In
contrast to the case of convex boundaries, the flow patterns extend spirally from the
outer to the inner regions. The tilting direction of the flow pattern is opposite to that
of the convex boundaries and is consistent with asymptotic expansion results for the
curvature of the boundaries (Busse 1983a, b; Busse & Or 1986).

Figure 7 plots each term of the right-hand side of the kinetic energy equation (3.1)
and the thermal energy equation (3.2) for the critical convection shown in figure 6. It
can be seen that kinetic energy is generated by the buoyancy force in the outer-half
region. When the Prandtl number is large, both kinetic and thermal energies are
dissipated by viscosity and thermal diffusivity in the same energy-generating region.
As the Prandtl number decreases, the region of viscous dissipation extends inward,
while the generation of kinetic and thermal energies and the dissipation of thermal
energy still occur inside the outer-half region. At the same time, the ratio of kinetic
energy flux convergence by the Rossby waves increases. The convergence is negative
in the outer region and positive in the inner region. This means that the Rossby waves
are excited in the outer region, propagate inward in association with kinetic energy
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Figure 5. Comparison of the patterns of the stream function obtained by the local dispersion
relation (3.14) (left panels) and those of the critical convection calculated numerically (right
panels) for the spherical convex boundaries and the uniform basic temperature gradient
dΘ/dy = −1. The structures above the horizontal lines y = 0.5 should be compared: (a) P = 0.1,
ω = −86.2, k = 10.2; (b) P = 0.2, ω = −181.8, k = 12.6; (c) P =0.5, ω = −245.1, k = 13.3; (d)
P = 1.0, ω = −344.3, k = 14.9.

and are dissipated in the inner region. It can also be observed that the dynamic factors
dominate energy budget in the inner-half region, and the thermal factors become less
important as the Prandtl number is decreased.

Since kinetic energy is generated and convective motion is excited in the outer-half
region, we suppose that the Rossby waves with frequency ω and wavenumber k are
emitted from y =0.5. As the waves propagate radially and y becomes small, η(Y )
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Figure 6. Structures of critical convection for concave boundaries (compare with figure 2 for
convex boundaries) and uniform basic temperature gradient dΘ/dy = −1 for various values
of the Prandtl number: (a) P = 0.1, (b) P = 0.2, (c) P = 0.5 and (d) P = 1.0. The left and right
panels show the stream function and the temperature disturbance, respectively.

increases. Then, the wavenumber in the y direction l(y) varies according to (3.12),
and the absolute value of l increases to conserve ω and k. As a result, the wavefront
of the Rossby waves inclines and approaches the horizontal surface as they propagate
inward, and a spiral structure is formed. The explicit expression of the distribution of
the stream function at a given time is as follows:

ψ(x, y, t) = ψ̂0 exp

{
i

(
kx +

∫ 0.5

y

l(y) dy − ωt

)}
. (3.15)

Figure 8 shows the distributions of the stream function obtained by (3.15) with the
frequency and wavenumber of critical convection at P = 0.1. Similar to the previous
section, the cases with positive and negative signs in (3.12) are shown. The case with
kl < 0, i.e. negative group velocity in the y direction, is consistent with the pattern of
the critical convection.
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Figure 7. The same as figure 3 but for the concave boundaries and the uniform basic
temperature gradient dΘ/dy = −1 : (a) P = 0.1, (b) P = 0.2, (c) P =0.5 and (d) P = 1.0.

Moreover, evaluating the effect of viscous dissipation, the distribution of the stream
function becomes

ψ(x, y, t) = ψ̂0 exp

{
i

(
kx+

∫ 0.5

y

l(y) dy−ωt

)}
exp

{
−

∫ 0.5

y

P (k2+l(y)2)/Cgy(y) dy

}
.

(3.16)

Figure 9 compares the stream function calculated by (3.16) and that of critical
convection obtained numerically for various values of the Prandtl number. The
comparison shows that (3.16) well describes the structure of the stream function of
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Figure 8. Structures of the streamlines for concave boundaries (compare with figure 4 for
convex boundaries) and uniform basic temperature gradient dΘ/dy = −1 obtained by the
local dispersion relation (3.13). The parameters are ω = −208.5, k =14.9, which are those of
the critical convection for P = 0.1 : (a) Positive y component of the group velocity (outward,
kl > 0, Cgy > 0); (b) Negative y component of the group velocity (inward, kl < 0, Cgy < 0).

critical convection. Similar to the case of convex boundaries, it is observed that the
propagation distance of the Rossby waves decreases as the Prandtl number increases
and the viscous effect becomes strong. The radial extent of the streamline obtained
by (3.16) is nearly equal to that of the critical convection.

3.3. Inverse tilting direction

We have seen in the previous sections that the tilting direction of the flow pattern
is determined by the radial propagation direction of the Rossby waves. The results
imply that the curvature of the boundaries is the only factor determining the region
where the convective motion and the Rossby waves are excited. In order to confirm
these statements, this section presents two artificial but instructive solutions with the
tilting direction of the flow pattern inverse to that expected from the curvature of the
boundaries.

The first solution is of the case in which the boundaries are convex and the
thermally unstable region is confined near the outer boundary:

dΘ

dy
= − exp

(
− (y − 1)2

y2
b

)
, (3.17)

where yb is the typical width of the unstable region. Figure 10(a) shows the
distributions of the stream function and temperature disturbance for yb = 0.01 and
P = 0.1. Although the tilting direction of the temperature disturbance contours is
inward in the retrograde direction, the flow pattern tilts inward in the prograde
direction. This is the inverse of what is expected, considering the curvature of the
boundaries. In this case, since only the region near the outer boundary is unstable, the
propagation direction of the emitted Rossby waves is forced to be inward. Therefore,
kl is negative and the flow pattern tilts in the positive x and positive y directions. The
energy budget of the critical convection is shown in figure 11(a). The convergence of
the energy flux by the Rossby waves shows that the Rossby waves generated near the
outer boundary propagate and transport kinetic energy inward.

The second solution is of the case in which the boundaries are concave and the
thermally unstable region is confined near the inner boundary:

dΘ

dy
= − exp

(
−y2

y2
b

)
. (3.18)

Figure 10(b) shows the distributions of the stream function and temperature
disturbance for yb = 0.01 and P = 0.1. The tilting direction of the flow pattern is
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Figure 9. Comparison of the patterns of the stream function obtained by the local dispersion
relation (3.14) (left panels) and those of the critical convection calculated numerically (right
panels) for concave boundaries (compare with figure 5 for convex boundaries) and uniform
basic temperature gradient dΘ/dy = −1. The structures below the thick horizontal lines should
be compared: (a) P = 0.1, ω = −208.5, k = 14.9; (b) P = 0.2, ω = −420.1, k = 19.6; (c) P = 0.5,
ω = −566.6, k = 21.2; (d) P = 1.0, ω = −799.0, k = 22.8.

outward in the prograde direction, which is the inverse of what is expected, considering
the curvature of the boundaries. In this case, since the propagation direction of the
emitted Rossby waves is forced to be outward because of the inner boundary, kl is
positive, and the flow pattern tilts in the negative x and positive y directions. The
kinetic energy budget presented in figure 11(b) shows that the convergence of the
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Figure 10. Structures of critical convection whose flow patterns are tilted in a direction
inverse to that expected from the curvature of the boundaries. (a) Convex boundaries and
basic temperature gradient given by (3.17) (yb = 0.01, P = 0.1). (b) Concave boundaries and
basic temperature gradient given by (3.18) (yb = 0.01, P = 0.1). The left and right panels show
the stream function and the temperature disturbance, respectively.
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energy flux by the Rossby waves indicates outward propagation of the Rossby waves
from near the inner boundary.

4. Summary
We have interpreted the characteristics of two-dimensional spiral convection in a

rotating annulus with convex and concave boundaries containing the fluid in the
direction of the rotation axis through the radial propagation properties of the Rossby
waves. An energy budget analysis, which is usually performed for hydrodynamic
instability problems, had not been carried out for the spiral convection problem so
far. Thus the result of the budget analysis gives us a new finding on the spiralling
convection: the spiralling convection has a structure such that kinetic energy is
generated in the region with a weak topographic β effect, dynamically transferred to
the region with a strong β effect and dissipated there by viscosity. On the basis of
this result, the theory of the Rossby wave dynamics is applied to the tailing part of
the spiral structure, and it is shown that the spiral structure is well explained by the
simple dispersion relation of the traditional Rossby waves.

An important conclusion is that the tilting direction of the spiral-flow pattern is
determined not by the curvature of the boundaries but by the radial propagation
direction of the Rossby waves excited by thermal convection. The geometry of the
boundaries in the direction of the rotating axis is the only factor determining the place
of occurrence of thermal convection. We have presented examples in which the tilting
direction is inverse to that expected from the curvature. In these cases, the kinetic
energy budget analysis confirms that the tilting direction of the flow pattern is
determined by the propagation direction of the Rossby waves.

A further conclusion is that the spiral convective structure is well described by the
radial propagation properties of the Rossby waves. In the case of convex spherical
boundaries, thermal convection tends to occur in the inner region where the inclination
of the boundaries is weak. The Rossby waves excited by convection in the inner
region propagate outward and dissipate by viscosity. As the Rossby waves propagate
outward, the radial local wavenumber increases and a spiral structure is formed. For
concave boundaries, the inclination of the boundaries is weak in the outer region,
where thermal convection tends to occur. The Rossby waves excited there propagate
inward and dissipate in the inner region. As a result, a spiral pattern with a tilting
direction inverse to that of the convex boundary case is formed. The flow patterns
calculated by the dispersion relation are consistent with those of the critical convection
obtained numerically. The kinetic energy budget analysis also confirms the geometry
of the propagation of the Rossby waves, which is important for forming the spiral
structure. The reason for the outward-prograde tilting of the streamlines in the case
of convex boundaries is the increase of the radial wavenumber in the outer region as
a result of conservation of the phase speed of the Rossby waves; it is not because the
propagation speed in the longitudinal direction is faster in the outer region than in
the inner region (Busse 2002; Vasavada & Showman 2005).

For convex spherical boundaries, the structure of the critical convection has
characteristics similar to that of thermal convection in rapidly rotating spherical
shells. When the Prandtl number is large, radially confined Taylor-column-type
vortices appear in the inner region. As the Prandtl number decreases, they extend
outward and form a spiral structure. Therefore, it is expected that two-dimensional
convection in a rotating annulus with the properties of the Rossby waves can be
applied to convection in rapidly rotating spheres and spherical shells. Convective
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motion in rapidly rotating spheres and spherical shells without internal heating tends
to occur near the axial cylindrical surface tangent to the inner sphere, where the
inclination of the boundary is weak (Dormy et al. 2003). Alternatively, for uniform
internal heating, convection in rapidly rotating spheres and spherical shells tends to
occur in the middle of the sphere because of the competition between the inhibitory
effect of the tilting boundaries on the occurrence of thermal convection and the
extent of thermal instability, which increases outward (Busse 1970). When the Prandtl
number is small, the viscous effect is weak and the Rossby waves excited by thermal
convection in the inner or the middle region can propagate outward. This constitutes
spiralling-columnar convection. In contrast, when the Prandtl number is large, the
viscous effect is strong and the Rossby waves cannot propagate outward and fluid
motion is confined in the inner or middle region. This forms Taylor-column-type
convection.

The generation of mean zonal flows excited by spiralling convection is usually
explained by the Reynolds stress accompanying the tilting of the flow pattern. In
the case of convex spherical boundaries, the Reynolds stress vxvy , which is produced
by the correlation of the x and y components of the velocity vx and vy , is negative,
and momentum in the negative x direction (prograde) is transported outward and
prograde mean zonal flow is generated in the outer region. However, this mean zonal
flow generation can also be explained by the properties of the Rossby waves. Since
the phase speed c in the x direction of the topographic Rossby waves is negative
(prograde), the momentum of the Rossby waves E/c is in the same direction, where E

is the energy of the Rossby waves. As seen in § 3.1, since the Rossby waves are emitted
from the inner region, negative momentum is lost there. As a result, positive
momentum is left and retrograde mean zonal flow is generated. Alternatively, in
the outer region, the Rossby waves are injected and dissipated. Therefore, negative
momentum accumulates there and prograde mean zonal flow is generated.

It should be noted that the above argument holds because of the separation of the
thermal factors in the outer region: the thermal effects concentrate in the inner region
and only the dynamical factors are sufficient for consideration of fluid motion in the
outer region; for example, in the case of a constant coefficient of the topographic
β effect and uniform unstable stratification, the convection cells do not tilt and the
second-order mean zonal flow is not induced by thermal convection (Busse & Or
1986), whereas the momentum of the dynamic Rossby waves seems to remain finite.
Because the thermal effects spread over the whole domain in this case, conservation
of potential vorticity is broken, and then, discussion in terms of the second-order
momentum of the Rossby waves for this example becomes inappropriate.

Jones, Soward & Mussa (2000, hereafter JSM) used the WKBJ (Wentgel–
Krasfamers–Brillouin–Jeffreys) method on the complex radial coordinate to determine
the structure and critical parameters of convection in a rotating sphere (Jones et al.
2000), while in this study the spiral structure is examined by using the traditional
Rossby waves on the real radial coordinate, thanks to cutting out the tailing part of the
spiral convection. The approach of JSM is mathematically clear and straightforward
in obtaining the critical mode of convection. However, mathematical completeness
does not always bring physical understanding. The approach of this paper is expected
to complement it. The explanation of spiral structure using the simple dispersion
relation presented in this paper would clarify the physical structure of the group
velocity and spatial gradients of the frequency embedded in the analysis of JSM; for
example reflection of the spatial gradients of the frequency on the spiral convection
is interpreted by the terms of the Rossby wave dynamics as the radial wavenumber
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variation to conserve the frequency. Furthermore, it is shown that the direction of the
tilting of the spiral structure is connected with the sign of the group velocity of the
Rossby waves, which is difficult to grasp at a glance from the analysis of JSM.

Certainly, there are several points left to be unravelled; for example the frequency
gradient condition at the critical point is not included in the discussions of this paper.
In the asymptotic theory of JSM, the condition of vanishing of group velocity at
the critical point leads to the flow structure around the convection centre and the
critical values of the parameters. On the other hand, our discussion deals with the
spiral structure far from the convection centre, and critical values of the Rayleigh
number and azimuthal wavenumber are given by the numerical results. Nevertheless,
the value of the paper, i.e. a simple description of the tailing part of the spiral
structure by the traditional Rossby wave dynamics, is not diminished. Generally,
since the Rossby wave originates from the conservation of potential vorticity, which
is not a term restricted to meteorology and oceanography but a general concept
of fluid dynamics, describing phenomena by the Rossby waves and explaining them
through the concept of potential vorticity is meaningful for researchers not only in
meteorology and oceanography but also in more extensive surrounding fields such
as fluid dynamics and physics (e.g. Baldwin et al. 2007). For example Yano et al.
(2005) perform numerical experiments on columnar two-dimensional free-decaying
turbulence in a rotating sphere and interpret their results through the concept of
potential vorticity. Following this context, the analyses presented in this paper would
help the further understanding of the spiral convection.

The author thanks Professor Y.-Y. Hayashi and Professor M. Yamada for their
helpful discussions and encouragements. He is also grateful to three anonymous
reviewers for their useful comments. For the calculation of the critical modes
of convection, the library for spectral transform ‘ISPACK’ (http://www.gfd-
dennou.org/library/ispack/) and its Fortran90 wrapper library ‘SPMODEL library’
(Takehiro et al. 2006) were used. The eigenvalue problems were solved with the
subroutine ‘LAPACK’ (ftp://ftp.netlib.org/lapack/). The products of the Dennou
Ruby project (http://www.gfd-dennou.org/library/ruby/) were used for drawing the
figures.
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